一 : 橡胶加工工艺是什么
橡胶加工工艺是什么的参考回复
橡胶的加工工艺过程主要是解决塑性和弹性矛盾的过程,通过各种加工手段,使得弹性的橡胶变成具有塑性的塑炼胶,在加入各种配合剂制成半成品,然后通过硫化是具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。
(www.61k.com”工艺流程选段:拉伸强度是表征制品能够抵抗拉伸破坏的极限能力。影响橡胶拉伸强度的主要因素有:大分子链的主价键、分子间力以及高分子链柔性。拉伸强度与橡胶结构的关系: 分子间作用力大,如极性和刚性基团等; 分子量增大,范德华力增大,链段不易滑动,相当于分子间形成了物理交联点,因此随分子量增大,拉伸强度增高,到一定程度时达到平衡;分子的微观结构,如顺式和反式结构的影响; 结晶和取向
工艺流程开始:
1综述
橡胶制品的主要原料是生胶、各种配合剂、以及作为骨架材料的纤维和金属材料,橡胶制品的基本生产工艺过程包括塑炼、混炼、压延、压出、成型、硫化6个基本工序。
橡胶的加工工艺过程主要是解决塑性和弹性矛盾的过程,通过各种加工手段,使得弹性的橡胶变成具有塑性的塑炼胶,在加入各种配合剂制成半成品,然后通过硫化是具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。
2橡胶加工工艺
2.1塑炼工艺
生胶塑炼是通过机械应力、热、氧或加入某些化学试剂等方法,使生胶由强韧的弹性状态转变为柔软、便于加工的塑性状态的过程。
生胶塑炼的目的是降低它的弹性,增加可塑性,并获得适当的流动性,以满足混炼、亚衍、压出、成型、硫化以及胶浆制造、海绵胶制造等各种加工工艺过程的要求。
掌握好适当的塑炼可塑度,对橡胶制品的加工和成品质量是至关重要的。在满足加工工艺要求的前提下应尽可能降低可塑度。随着恒粘度橡胶、低粘度橡胶的出现,有的橡胶已经不需要塑炼而直接进行混炼。
在橡胶工业中,最常用的塑炼方法有机械塑炼法和化学塑炼法。机械塑炼法所用的主要设备是开放式炼胶机、密闭式炼胶机和螺杆塑炼机。化学塑炼法是在机械塑炼过程中加入化学药品来提高塑炼效果的方法。
开炼机塑炼时温度一般在80℃以下,属于低温机械混炼方法。密炼机和螺杆混炼机的排胶温度在120℃以上,甚至高达160-180℃,属于高温机械混炼。
生胶在混炼之前需要预先经过烘胶、切胶、选胶和破胶等处理才能塑炼。
几种胶的塑炼特性:
天然橡胶用开炼机塑炼时,辊筒温度为30-40℃,时间约为15-20min;采用密炼机塑炼当温度达到120℃以上时,时间约为3-5min。
丁苯橡胶的门尼粘度多在35-60之间,因此,丁苯橡胶也可不用塑炼,但是经过塑炼后可以提高配合机的分散性
顺丁橡胶具有冷流性,缺乏塑炼效果。顺丁胶的门尼粘度较低,可不用塑炼。
氯丁橡胶得塑性大,塑炼前可薄通3-5次,薄通温度在30-40℃。
乙丙橡胶的分子主链是饱和结构,塑炼难以引起分子的裂解,因此要选择门尼粘度低的品种而不用塑炼。
丁腈橡胶可塑度小,韧性大,塑炼时生热大。开炼时要采用低温40℃以下、小辊距、低容量以及分段塑炼,这样可以收到较好的效果。
2.2混炼工艺
混炼是指在炼胶机上将各种配合剂均匀的混到生胶种的过程。混炼的质量是对胶料的进一步加工和成品的质量有着决定性的影响,即使配方很好的胶料,如果混炼不好,也就会出现配合剂分散不均,胶料可塑度过高或过低,易焦烧、喷霜等,使压延、压出、涂胶和硫化等工艺不能正常进行,而且还会导致制品性能下降。
混炼方法通常分为开炼机混炼和密炼机混炼两种。这两种方法都是间歇式混炼,这是目前最广泛的方法。
开炼机的混合过程分为三个阶段,即包辊(加入生胶的软化阶段)、吃粉(加入粉剂的混合阶段)和翻炼(吃粉后使生胶和配合剂均达到均匀分散的阶段)。
开炼机混胶依胶料种类、用途、性能要求不同,工艺条件也不同。混炼中要注意加胶量、加料顺序、辊距、辊温、混炼时间、辊筒的转速和速比等各种因素。既不能混炼不足,又不能过炼。
密炼机混炼分为三个阶段,即湿润、分散和涅炼、密炼机混炼石在高温加压下进行的。操作方法一般分为一段混炼法和两段混炼法。
一段混炼法是指经密炼机一次完成混炼,然后压片得混炼胶的方法。他适用于全天然橡胶或掺有合成橡胶不超过50%的胶料,在一段混炼操作中,常采用分批逐步加料法,为使胶料不至于剧烈升高,一般采用慢速密炼机,也可以采用双速密炼机,加入硫磺时的温度必须低于100℃。其加料顺序为生胶—小料—补强剂—填充剂—油类软化剂—排料—冷却—加硫磺及超促进剂。
两段混炼法是指两次通过密炼机混炼压片制成混炼胶的方法。这种方法适用于合成橡胶含量超过50%得胶料,可以避免一段混炼法过程中混炼时间长、胶料温度高的缺点。第一阶段混炼与一段混炼法一样,只是不加硫化和活性大的促进剂,一段混炼完后下片冷却,停放一定的时间,然后再进行第二段混炼。混炼均匀后排料到压片机上再加硫化剂,翻炼后下片。分段混炼法每次炼胶时间较短,混炼温度较低,配合剂分散更均匀,胶料质量高。
2.3压延工艺
压延是将混炼胶在压延机上制成胶片或与骨架材料制成胶布半成品的工艺过程,它包括压片、贴合、压型和纺织物挂胶等作业。
压延工艺的主要设备是压延机,压延机一般由工作辊筒、机架、机座、传动装置、调速和调距装置、辊筒加热和冷却装置、润滑系统和紧急停车装置。压延机的种类很多,工作辊筒有两个、三个、四个不等,排列形式两辊有立式和卧式;三辊有直立式、Γ型和三角形;四辊有Γ型、L型、Z型和S型等多种。按工艺用途来分主要有压片压延机(用于压延胶片或纺织物贴胶,大多数三辊或四辊,各辊塑度不同)、擦胶压延机(用于纺织物的擦胶,三辊,各辊有一定得速比,中辊速度大。借助速比擦入纺织物中)、通用压延机(又称万能压延机,兼有压片和擦胶功能、三辊或四辊,可调速比)、压型压延机、贴合压延机和钢丝压延机。
压延过程一般包括以下工序:混炼胶的预热和供胶;纺织物的导开和干燥(有时还有浸胶)
胶料在四辊或三辊压延机上的压片或在纺织物上挂胶依机压延半成品的冷却、卷取、截断、放置等。
在进行压延前,需要对胶料和纺织物进行预加工,胶料进入压延机之前,需要先将其在热炼机上翻炼,这一工艺为热炼或称预热,其目的是提高胶料的混炼均匀性,进一步增加可塑性,提高温度,增大可塑性。为了提高胶料和纺织物的粘合性能,保证压延质量,需要对织物进行烘干,含水率控制在1-2%,含水量低,织物变硬,压延中易损坏,含水量高,粘附力差。
几种常见的橡胶的压延性能 天然橡胶热塑形大,收缩率小,压延容易,易粘附热辊,应控制各辊温差,以便胶片顺利转移;丁苯橡胶热塑性小,收缩率大,因此用于压延的胶料要充分塑炼。由于丁苯橡胶对压延的热敏性很显著,压延温度应低于天然橡胶,各辊温差有高到低;氯丁橡胶在75-95℃易粘辊,难于压延,应使用低温法或高温法,压延要迅速冷却,掺有石蜡、硬酯酸可以减少粘辊现象;乙丙橡胶压延性能良好,可以在广泛的温度范围内连续操作,温度过低时胶料收缩性大,易产生气泡;丁腈橡胶热塑性小,收缩性大,在胶料种加入填充剂或软化剂可减少收缩率,当填充剂重量占生胶重量的50%以上时,才能得到表面光滑的胶片,丁腈橡胶粘性小易粘冷辊。
2.4压出工艺
压出工艺是通过压出机机筒筒壁和螺杆件的作用,使胶料达到挤压和初步造型的目的,压出工艺也成为挤出工艺。
压出工艺的主要设备是压出机。
几种橡胶的压出特性:天然橡胶压出速度快,半成品收缩率小。机身温度50-60℃,机头70-80℃,口型80-90℃;丁苯橡胶压出速度慢,压缩变形大,表面粗糙,机身温度50-70℃,机头温度70-80℃,口型温度100-105℃;氯丁橡胶压出前不用充分热炼,机身温度50℃,机头℃,口型70℃;乙丙橡胶压出速度快、收缩率小,机身温度60-70℃,机头温度80-130℃,口型90-140℃。丁腈橡胶压出性能差,压出时应充分热炼。机身温度50-60℃,机头温度70-80℃。
2.5注射工艺
橡胶注射成型工艺是一种把胶料直接从机筒注入模性硫化的生产方法。包括喂料、塑化、注射、保压、硫化、出模等几个过程。注射硫化的最大特点是内层和外层得胶料温度比较均匀一致,硫化速度快,可加工大多数模压制品。
橡胶注射成型的设备是橡胶注射成型硫化机。
2.6压铸工艺
压铸法又称为传递模法或移模法。这种方法是将胶料装在压铸机的塞筒内,在加压下降胶料铸入模腔硫化。与注射成型法相似。如骨架油封等用此法生产溢边少,产品质量好。
2.7硫化工艺
早先,天然橡胶的主要用途只是做擦字橡皮;后来才用于制造小橡胶管。直到1823年,英国化学家麦金托什才发明将橡胶溶解在煤焦油中然后涂在布上做成防水布,可以用来制造雨衣和雨靴。但是,这种雨衣和雨靴一到夏天就熔化,一到冬天便变得又硬又脆。为了克服这一缺点,当时许多人都在想办法。美国发明家查理•古德伊尔也在进行橡胶改性的试验,他把天然橡胶和硫黄放在一起加热,希望能获得一种一年四季在所有温度下都保持干燥且富有弹性的物质。直到1839年2月他才获得成功。一天他把橡胶、硫黄和松节油混溶在一起倒入锅中(硫黄仅是用来染色的),不小心锅中的混合物溅到了灼热的火炉上。令他吃惊的是,混合物落入火中后并未熔化,而是保持原样被烧焦了,炉中残留的未完全烧焦的混合物则富有弹性。他把溅上去的东西从炉子上剥了下来,这才发现他已经制备了他想要的有弹性的橡胶。经过不断改进,他终于在1844年发明了橡胶硫化技术。
在橡胶制品生产过程中,硫化是最后一道加工工序。硫化是胶料在一定条件下,橡胶大分子由线型结构转变为网状结构的交联过程。硫化方法有冷硫化、室温硫化和热硫化三种。大多数橡胶制品采用热硫化。热硫化的设备有硫化罐、平板硫化机等。
2.8其他生产工艺
橡胶制品的生产工艺还有浸渍法、涂刮法、喷涂法、蕉塑法等。
3橡胶配方设计
3.1橡胶的硫化(交联)
交联是橡胶高弹性的基础,其特点是在一个橡胶分子链上仅形成少数几处交联点,因此不会影响橡胶分子链段的运动。
橡胶的硫化体系较多,常见的有:硫黄硫化体系、过氧化物硫化体系、树脂硫化体系、氧化物硫化体系等
3.1.1硫黄硫化体系
主要适应于二烯类橡胶,其硫化活性点是在双键旁边的α氢原子。
组成:
Ø硫黄
Ø活性剂:氧化锌,硬脂酸
Ø促进剂:噻唑类(DM,M),次磺酰胺类(CZ,NOBS),秋兰姆类(TETD,TMTM,TMTD),胍(D)
图 1 硫黄硫化体系的结构特点
表1硫黄硫化体系分类
硫化体系 硫黄/促进剂(S/A)比交联键组成 性能特点
普通硫黄硫化体系 >1 以多硫键为主 动态疲劳性能好;老化性能差
半有效硫黄硫化体系(Semi-EV) ≈1 以单硫键和双硫键为主 老化性能好;压缩永久变形小;无硫化返原
有效硫黄硫化体系(EV)0;ΔH > 0(吸热),尽可能小。
(2) 溶度参数:用Hildebrand方程进行判断。
δ1与δ2越接近,ΔH越小。
极性橡胶——极性软化剂;非极性橡胶——非极性软化剂
(3) 溶剂化作用(次要因素):一般认为,橡胶的双键有一定的亲核性,增塑剂酯类有亲电性,通过亲电-亲核作用增加了两者的界面强度,相容性增加,不过这种亲电-亲核作用较弱,因此一般用量不宜过大(5-10phr)。如NR与DBP,NBR与芳烃油的相容性,SBR、BR与NR的差异,
(4) CR的溶剂选择原则
3.4橡胶的防护体系
老化是指一切使橡胶性能劣化的过程。如O2,O3,热,光,疲劳,力,催化剂,化学介质等,为了考察这些影响因素,设计了许多试验方法。
氧弹试验 O2
热氧老化试验 O2,热
光老化试验 光(户外,室内,人造光)

臭氧老化试验 O3
疲劳试验 力,疲劳
DSC、TG 热氧化,O2,空气;热降解,N2
3.4.1分类
物理:迁移、隔绝氧的作用
防 老 剂
化学:无污染型(酚类,1010,1076;硫化二丙酸酯(DLTP,DSTP);亚磷酸酯,168);污染型(胺类,RD,D,A)
防护体系 对苯二胺类(4010,4010NA)
抗臭氧剂
线形碳氢化合物(粗晶蜡,微晶蜡)
紫外线剂(橡胶不常用、炭黑的作用)
金属离子钝化剂
3.4.2反应机理
(1) 链引发
E = 0
(2) 链增长
E = 4-9kcal/mol
E = 0kcal/mol
E = 30kcal/mol
而金属粒子则催化ROOH的分解。
(3) 链终止
3.5配方设计与硫化橡胶物性的关系
3.5.1拉伸强度
拉伸强度是表征制品能够抵抗拉伸破坏的极限能力。影响橡胶拉伸强度的主要因素有:大分子链的主价键、分子间力以及高分子链柔性。
一 拉伸强度与橡胶结构的关系
(1) 分子间作用力大,如极性和刚性基团等;
(2) 分子量增大,范德华力增大,链段不易滑动,相当于分子间形成了物理交联点,因此随分子量增大,拉伸强度增高,到一定程度时达到平衡;
(3) 分子的微观结构,如顺式和反式结构的影响;
(4) 结晶和取向
二 拉伸强度与硫化体系的关系
(1) 交联密度:有一极大值。
(2) 交联键类型:随交联键能增加,拉伸强度减小;多硫键具有较高的拉伸强度,因为弱键在应力状态下能起到释放应力的作用,减轻应力集中的程度,使交联网能均匀地承受较大的应力。对于能产生结晶的NR等,交联弱键的早期断裂,还有利于主链的定向结晶。
三 拉伸强度与填料的关系
大量的试验表明:粒径越小,比表面积越大,表面活性越大,结构性越高,补强的效果越好。同时随填料用量增加,有最大值,其大小受橡胶品种和填料类型的影响。
四 拉伸强度与软化剂的关系
软化剂的加入会损失拉伸强度,且与软化剂与橡胶的相容性有关。
3.5.2撕裂强度
橡胶的撕裂是由于材料中的裂纹或裂口受力时迅速扩大而导致破坏的现象,一般是沿着分子链数目最小,即阻力最小的途径发展。主要与橡胶应力-应变曲线的形状和粘弹性有关。与橡胶品种、硫化体系、软化剂均有关系。
百度:李秀权工作室 摘录!!
评论 | 31 1
2012-11-05 10:59 yoyo7894879 | 四级
先根据要求选择适合的橡胶及原料,然后用适合的工艺
工艺:1、 塑炼 2、混炼 3、压延 4、压出 5、成型 6、硫化
评论 | 1 0
2012-11-06 21:41 zhongji707130 | 二级
橡胶的原材料: 生胶、各种配合剂、以及作为骨架材料的纤维和金属材料。
橡胶原料有合成橡胶和天然橡胶,从工厂或橡胶园做的还只是基础原材料,制品加工厂还要配方,加入补强、填充、防老化、硫化剂、促进剂等大约一倍多的填料(设备用开炼机或密炼机),经模压或挤出等设备成型,160度左右的高温1~20MPa左右的高压(常用设备是硫化机或硫化罐或轮胎硫化模)下产生硫化反应形成弹性的制品。
1.橡胶制品种类繁多,但生产工艺过程却基本相同。以一般固体橡胶(生胶)为原料的橡胶制品的基本工艺过程包括:塑炼、混炼、压延、压出、成型、硫化六个基本工序。当然,原材料准备、成品整理、检验包装等基本工序也少不了。
2.橡胶的加工工艺过程主要是解决塑性和弹性性能这个矛盾的过程,通过各种工艺手段,使得弹性的橡胶变成具有塑性的塑炼胶,再加入各种配合剂制成半成品,然后通过硫化使具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。
3.为了达到使用性能,还应在生产工艺中增加辅助措施,例如为了增加强度和耐磨性,会配用硬质碳黑。
4.要对橡胶进行机械加工的极少,但是绝非瞎想。一般精度的可采用高速钢刀具,要求高的,需采用人造金刚石刀具。当然也可用硬质合金刀具,但应选用低含钴量超细微颗粒径的。钻孔需用三尖钻。
5.如果仅是一般的脚垫,建议用硬塑料或者尼龙材料制作比较简单。如果要有吸震、减震效果,可在圆台的两端做个沉坑,压入橡胶或羊毛毡垫,效果会不错的。不妨试试。
橡胶加工工艺:第一篇橡胶原材料及配方设计共十章,主要讲述橡胶制品生产所需天然橡胶、合成橡胶、新形态橡胶和橡胶代用材料,硫化体系、补强填充体系、软化增塑体系、防护体系和其它体系配合剂以及骨架材料的品种、组成、性质性能与作用原理,橡胶(橡塑)并用和配方设计的原理与方法等。第二篇橡胶制品加工工艺共五章,主要讲述橡胶制品加工过程,包括塑炼、混炼、压延、压出、硫化的原理与工艺方法以及常出现的质量问题与改进措施等。
三、 硫化
1. 硫化对橡胶性能和影响
1)、定伸强度
通过硫化,橡胶单个分子间产生交联,且随交联密度的增加,产生一定变形(如拉伸至原长度的200%或300%)所需的外力就随之增加,硫化胶也就越硬。
对某一橡胶,当试验温度和试片形状以及伸长一定时,则定伸强度与MC(两个交联键之间橡胶分子的平均分子量)成反比,也就是与交联度成正比。这说明交联度大,即交联键间链段平均分子量越小,定伸强度也就越高。
2)、硬度
与定伸强度一样,随交联度的增加,橡胶的硬度也逐渐增加,测量硬度是在一定形变下进行的,所以有关定促强度的上述情况也基本适用于硬度。
3)、抗张强度
抗张强度与定伸强度和硬度不同,它不随交联键数目的增加而不断地上升,例如使硫磺硫化的橡胶,当交联度达到适当值后,如若继续交联,其抗张强度反会下降。在硫黄用量很高的硬质胶中,抗张强度下降后又复上升,一直达到硬质胶水平时为止。
4)、伸长率和永久变形
橡胶的伸长率随交联度的增加而降低,永久变形也有同样的规律。有硫化返原性的橡胶如天然橡胶和丁基橡胶,在过硫化以后由于交联度不断降低,其伸长率和永久变形又会逐渐增大。
5)、弹性
未硫化胶受到较长时间的外力作用时,主要发生塑性流动,橡胶分子基本上没有回到原来的位置的倾向。橡胶硫化后,交联使分子或链段固定,形变受到网络的约束,外力作用消除后,分子或链段力图回复原来构象和位置,所以硫化后橡胶表现出很大的弹性。交联度的适当增加,这种可逆的弹性回复表现得更为显著。
2. 硫化过程的四个阶段
胶料在硫化时,其性能随硫化时间变化而变化的曲线,称为硫化曲线。从硫化时间影响胶料定伸强度的过程来看,可以将整个硫化时间分为四个阶段:硫化起步阶段、欠硫阶段、正硫阶段和过硫阶段。
1)、硫化起步阶段(又称焦烧期或硫化诱导期)
硫化起步的意思是指硫化时间胶料开始变硬而后不能进行热塑性流动那一点的时间。硫起步阶段即此点以前的硫化时间。在这一阶段内,交联尚未开始,胶料在模型内有良好的流动性。胶料硫化起步的快慢,直接影响胶料的焦烧和操作安全性。这一阶段的长短取决于所用配合剂,特别是促进剂的种类。用有超速促进剂的胶料,其焦烧比较短,此时胶料较易发生焦烧,操作安全性差。在使用迟效性促进剂(如亚磺酰胺)或与少许秋兰姆促进剂并用时,均可取得较长的焦烧期和良好的操作安全性。但是,不同的硫化方法和制品,对焦烧时间的长短亦有不同要求。在硫化模压制品时,总是希望有较长的焦烧期,使胶料有充分时间在模型内进行流动,而不致使制品出现花纹不清晰或缺胶等到缺陷。在非模型硫化中,则应要求硫化起步应尽可能早一些,因为胶料起步快而迅速变硬,有利于防止制品因受热变软而发生变形。不过在大多数情况下仍希望有较长的焦烧时间以保证操作的安全性。
2)、欠硫阶段(又称预硫阶段)
硫化起步与正硫化之间的阶段称为欠硫阶段。在此阶段,由于交联度低,橡胶制品应具备的性能大多还不明显。尤其是此阶段初期,胶料的交联度很低,其性能变化甚微,制品没有实用意义。但是到了此阶段的后期,制品轻微欠硫时,尽管制品的抗张强度、弹性、伸长率等尚未达到预想的水平,但其抗撕裂性耐磨性和抗动态裂口性等则优于正硫化胶料。因此,如果着重要求后几种性能时,制品可以轻微欠硫。
3)、正硫阶段
大多数情况下,制品在硫化时都必须使之达到适当的交联度,达到适当的我联度的阶段叫做正硫化阶段,即正硫阶段。在此阶段,硫化胶的各项物理机械性能并非在同一时都达到最高值,而是分别达到或接近最佳值,其综合性能最好。此阶段所取的温度和时间称为正硫化温度和正硫化时间。
正硫化时间须视制品所要求的性能和制品断面的厚薄而定。例如,着重要求抗撕裂性好的制品,应考虑抗撕强度最高或接近最高值的硫化时间定为正硫化时间;要求耐磨性高的制品,则可考虑磨耗量小的硫化时间定为正硫化时间。对于厚制品,在选择正硫时间时,尚需将“后硫化”考虑进去。所谓“后硫化”,即是当制品硫取出以后,由于橡胶导热性差,传热时间长,制品因散热而降温也就较慢,所以它还可以继续进行硫化,特将它称为“后硫化”。“后硫化”导致的抗张强度和硬度进一步增加,弹性和其它机械性能降低,制品的使用寿命因之受到损害。所以,制品越厚就越应将“后硫化”考虑进去。在一般情况下,可以根据抗张强度最高值略前的时间或以强伸积(抗张强度与伸长率的乘积)最高值的硫化时间定为正硫化时间。
4)、过硫阶段
正硫阶段之后,继续硫化便进入过硫阶段。这一阶段的前期属于硫化平坦期的一部分。在平坦期中,硫化胶的各项物理机械性能基本上保持稳定。当过平坦期之后,天然橡胶和丁基橡胶由于断链多于交联出现硫化返原现象而变软;合成橡胶则因交联继续占优势和环化结构的增多而变硬,且伸长率也随之降低,橡胶性能受到损害。
硫化平坦期的长短,不仅表明胶料热稳定性的高低,而且对硫化工艺的安全操作以及厚制品的硫化质量的好坏均有直接影响。
对于硫黄硫化而言,硫化平坦期的长短,在很大程度上取决于所用促进剂的种类和用量。用有超速促进剂(如TMTD)的胶料,在硫化开始以后,由于它迅速失去活性,交联键的断裂得不到补充,引起硫化平坦期缩短。如果交联键的热稳定性差,则易产生硫化返原现象。当交联键的键能较高时,即使使用超速促进剂也能获得较长的硫化平坦期,使用低硫高促体系,便能达到这一目的。增高硫化温度,裂解比交联的速度增加得更快,硫化返原倾向越强,硫化平坦期也越短。所以采用高温硫化时,必须选取能使硫化平坦期较长的促进剂。使用超速促进剂时,要求硫化温度低,否则硫化平坦期将缩短到甚至不能防护可能发生的过硫。
3. 用硫化仪测定硫化程度
使用硫化仪测定胶料硫化特性方便,而且只需进行一次试验即可得到完整的硫化曲线。由此曲线可以直观地或经简单计算得到全套硫化参数:初始粘度、最低粘度、诱导时间(焦烧时间),硫化速度、正硫化时间和活化能等。由于硫化仪具有这些优点,故其在橡胶工业生产上及硫化动力学,硫化机理等的研究上得到越来越广泛的应用
二 : 橡子的加工与喂猪
橡子是一种含淀粉高达50~63.5%、粗蛋白质为3.4%、粗脂肪4.4%的高能量饲料,它的营养成分和一般料差不多。[www.61k.com)在山区柞林下随处可见。采集加工橡子可喂猪,节约精料,降低饲养成本。采收橡子多在晚秋、冬前季节,一般每50公斤橡子脱壳后可得到35公斤左右橡子仁(米)。采集的橡子要经过消灭害虫和增加饲喂价值的处理。一般常用处理橡子的方法有:1.水浸泡灭虫去涩法。将橡子放入缸、桶、水泥池里,填足清水至淹没橡子进行浸泡,同时上下搅动几次,使杂物或已受虫害的橡子漂浮水中,将其捞除干净。一般浸泡15天左右,其间换几次水,可把橡子里的幼虫和发育中的虫卵闷憋致死,并又可消除些橡子中含有的鞣酸(单宁)。
2.晒(烘)干脱壳法。把水浸泡好的橡子捞出沥干水,放在水泥地或石板席(帘)塑料布上摊开曝晒干或在火炕上烘干。使橡子壳与仁脱离,手摇动橡子听其壳里有响声时,用木棒或石碾打压,使橡子仁脱壳,用风车或簸箕除净壳皮。橡子仁呈黄色或乳黄色装入袋、箱、缸、桶等容器贮
藏。
3.粉碎橡子贮藏法。一般在橡子仁干燥,含水量在12%以下时,用石碾或粉碎机打成粉状,装编织(布)袋或塑料袋贮藏,扎紧口,放置高燥通风处贮放,可供橡子粉常年用作喂猪的精料。用橡子喂猪,最好不喂生鲜橡子、不喂整粒橡子。据化验,橡子含鞣酸量达12.8%,鞣酸味苦涩,对猪的消化功能有害,会降低食欲,并易发生严重便秘。因此,用橡子喂猪应注意以下几点:
1.在喂用前一天,将橡子仁(粉)浸泡在缸、盆、桶里,要搅动或漂洗几次,尽量溶失鞣酸,除净苦涩味,使猪爱吃,增膘,提高吸收利用率又不伤肠胃。
2.喂用要适量,并搭配其它饲料混合喂。橡子含蛋白质少,注意搭配蛋白质饲料。一般喂用量是:50公斤以内猪占日粮的25%左右,50公斤以上的占日粮35%左右,断奶仔猪占日粮的10%左右,怀孕母猪尽量少喂或不喂橡子,以防流产。没有粉碎条件的而喂用橡子仁时,在浸泡除鞣酸并软化后,可直接放饲槽里喂,但要掌握适量,不要看猪一时爱吃、吃的多而多喂,更不要喂不用水浸泡的鲜生橡子。
三 : 橡胶工人
1
熟练双手
举起几十公斤
打着粘度极高
天然胶
你质朴的脸上( 文章阅读网:www.61k.com )
一颗颗
挂满堇晶莹的汗水
2
灵巧的双手
顺着胶布裁剪
美丽青春影子
在劳动中闪耀着
你歌唱着
平凡的生活
3
夏天酷暑中
机器不断冒着
沸腾的热气
橡胶工人
依然坚持机器旁
赶气的绳子不断飞舞着
你用青春生命
抒写感人的篇章
4
你守着
冒着热气硫化罐
手拿工具
不断认真看着仪表
没有丝毫的畏惧
人生这一刻永远闪耀着光辉
5
你忙碌身影
不断窜梭着
低着头贴着套
剪刀
不断捻着
辊子不断滚动着
这人生
充满着无限的智慧
心永远在畅想着希望
6
你劳作的身影
在我眼前
不断浮现着
有力粗壮的双手
不断拉着成型水封
往前走
是这样认真的工作
7
那焊枪
一道道闪着光芒
你不断焊着
衣服被烫着
一个又一个窟窿
为了工作
你们奉献了
人生宝贵的青春
8
你一遍又一遍
涂着管子
青春的誓言
闪耀着光辉
你不害怕
剧毒骷髅涂料
你深情的话语
包含着深情
这样的人生永远充满着哲理
四 : 橡胶工人
我今天看了一篇文章,是讲一个关于橡胶工人麦金托发明了世界上第一件胶布雨衣。1823年在苏格兰,橡胶工人麦金托他买不起雨伞,只能冒着大雨赶路,他一不小心橡胶溶液滴在他的衣裤上了,他怎么擦都擦不掉,他发现被橡胶溶液弄脏的那块布不透雨,他就把橡胶溶液全都涂在衣裤上,这样就可以挡雨了。第二天早上他去了工厂,把自己的想法用上了,于是世界上第一件胶布雨衣就诞生了。
我读完了以后明白了一个道理:平时应该多观察、勤思考,做个有心人!
五年级:1473681511
五 : 简述橡胶加工工艺
一、 塑炼橡胶受外力作用产生变形,当外力消除后橡胶仍能保持其形变的能力叫做可塑性。增加橡胶可塑性工艺过程称为塑炼。橡胶有可塑性才能在混炼时与各种配合剂均匀混合;在压延加工时易于渗入纺织物中;在压出、注压时具有较好的流动性。此外,塑炼还能使橡胶的性质均匀,便于控制生产过程。但是,过渡塑炼会降低硫化胶的强度、弹性、耐磨等性能,因此塑炼操作需严加控制。
橡胶可塑度通常以威廉氏可塑度、门尼粘度和德弗硬度等表示。
1、塑炼机理
橡胶经塑炼以增加其可塑性,其实质乃是使橡胶分子链断裂 ,降低大分子长度。断裂 作用既可发生于大分子主链,又可发生于侧链。由于橡胶在塑炼时,遭受到氧、电、热、机械力和增塑剂等因素的作用,所以塑炼机理与这些因素密切相关,其中起重要作用的则是氧和机械力,而且两者相辅相成。通常可将塑炼区分为低温塑炼和高温塑炼,前者以机械降解作用为主,氧起到稳定游离基的作用;后者以自动氧化降解作用为主,机械作用可强化橡胶与氧的接触。
塑炼时,辊筒对生胶的机械作用力很大,并迫使橡胶分子链断裂,这种断裂大多发生在大分子的中间部分。
塑炼时,分子链愈长愈容易切断。顺丁胶等之所以难以机械断链,重要原因之一就是因为生胶中缺乏较高的分子量级分。当加入高分子量级分后,低温塑炼时就能获得显著的效果。
氧是塑炼中不可缺少的因素,缺氧时,就无法获得预期的效果。生胶塑炼过
塑炼时,设备与橡胶之间的摩擦显然使得胶温升高。热对塑炼效果极为重要,而且在不同温度范围内的影响也不同。由于低温塑炼时,主要依靠机械力使分子链断裂,所以在像章区域内(天然胶低于110℃)随温度升高,生胶粘度下降,塑炼时受到的作用力较小,以致塑炼效果反而下降。相反,高温塑炼时,主要是氧化裂解反应起主导作用,因而塑炼效果在高温区(天然胶高于110℃)将随温度的升高而增大,所以温度对塑炼起着促进作用。各种橡胶由于特性不同,对应于最低塑炼效果的温度范围也不一样,但温度对塑炼效果影响的曲线形状是相似的。由前已知,不论低温塑炼还是高温塑炼,使用化学增塑剂皆能提高塑炼效果。接受剂型增塑剂,如苯醌和偶氮苯等,它们在低温塑炼时起游离基接受剂作用,能使断链的橡胶分子游离基稳定,进而生成较短的分子;引发剂型增塑剂,如过氧化二苯甲酰和偶氮二异丁腈等,它们在高温下分解成极不稳定的游离基,再引发橡胶分子生成大分子游离基,并进而氧化断裂。此外,如硫醇类及二邻苯甲酰胺基苯基二硫化物类物质,它们既能使橡胶分子游离基稳定,又能在高温下引发橡胶形成游离基加速自动氧化断裂,所以,这类化学增塑剂称为混合型增塑剂或链转移型增塑剂。
2、塑炼工艺
生胶在塑炼前通常需进行烘胶、切胶、选胶和破胶等处理。烘胶是为了使生胶硬度降低以便切胶,同时还能解除结晶。烘胶要求温度不高,但时间长,故需注意不致影响橡胶的物理机械性能;例如天然胶烘胶温度一般为50~60℃,时间则需长达数十小时。生胶自烘房中取出后即切成10~20公斤左右的大块,人工选除其杂质后再用破胶机破胶以便塑炼。
按塑炼所用的设备类型,塑炼可大致分为三种方法。
1、开炼机塑炼
其优点是塑炼胶料质量好,收缩小,但生产效率低,劳动强度大。此法适宜于胶料变化多和耗胶量少的工厂。
开炼钢机塑炼属于低温塑炼。因此,降低橡胶温度以增大作用力是开炼机塑炼的关键。与温度和机械作用有关的设备特性和工艺条件都是影响塑炼效果的重要因素。
为了降低胶温,开炼钢机的辊筒需进行有效的冷却,因此辊筒设有带孔眼的水管,直接向辊筒表面喷水冷却以降低辊筒需进行有效的冷却,这样可以满足各种胶料塑炼时对辊温的基本要求。此外,采用冷却胶片的方法也是有效的,例如使塑炼形成的胶片通过一较长的运输带(或导辊)经空气自然冷却后再返回辊上,以及薄通塑炼(缩小辊距,使胶片变薄,以利于冷却)皆可。分段塑炼的目的也是为了降低胶温,其操作是将全塑炼过程分成若干段,来完成,每段塑炼后生胶需充分停放冷却。塑炼一般分为2~3段,每段停放冷却4~8小时。胶温随塑炼时间的延长而增高,若不能及时冷却,则生胶可塑性仅在塑炼初期显著提高,随后则变化很少,这种现象是由于 生胶温度升高而软化,分子易滑动和机械降解效率降低所致。胶温高还会产生假可塑性,一旦停放冷却后,可塑性又降低。两个辊筒的速比愈大则剪切作用愈强;因此,塑炼效果愈好。缩小辊间距也可以增大机械剪切作用,提高塑炼效果。
2、密炼机塑炼(高温、间断)
密炼机塑炼的生产能力大,劳动强度较低、电力消耗少;但由于是密闭系统,所以清理较难,故仅适用于胶种变化少的场合。
密炼机的结构较复杂,生胶在密炼室内一方面在转子与腔壁之间受剪应力和摩擦力作用,另一方面还受到上顶栓的外压。密炼时生热量极大,物料来不及冷却,所以属高温塑炼,温度通常高于120℃,甚至处于160~180℃之间。依据前述之高温塑炼机理,生胶在密炼机中主要是借助于高温下的强烈氧化断链来提高橡胶的可塑性;因此,温度是关键,密炼机的塑炼效果随温度的升高而增大。天然胶用此法塑炼时,温度一般不超过155℃,以110~120℃最好,温度过高也会导致橡胶的物理机械性能下降。
3、螺杆机塑炼(高温、边续)
螺杆塑炼的特点是在高温下进行连续塑炼。在螺杆塑炼机中生胶一方面受到强烈的搅拌作用,另一方面由于生用受螺杆与机筒内壁的摩擦产生大量的热,加速了氧化裂解。
用螺杆机塑炼时,温度条件很重要,实践表明,机筒温度以95~110℃为宜,机关温度以80~90℃为宜。因为机筒温度高于110℃,生胶的可塑料性也不会再有大的变化。机筒温度超过120℃则排胶温度太高而使胶片发粘,粘辊,不易补充加工。机筒温度低于90℃时,设备负荷增大,塑炼胶会出现夹生的现象。
合成胶塑炼较天然胶困难。为改进合成胶塑炼工艺性能,最好在合成过程中注意控制和调节分子量大小和分子量分布,以便制得门尼粘度较低和工艺性能良好的品种,如软丁苯和软丁腈胶等。这些品种可直接用于混炼。顺丁胶分子量较低,易冷流,塑炼效果不好,因此顺丁胶和适宜门尼粘度也应在合成过种中获得。氯丁胶门尼粘度低,一般不需塑炼,只要经过3~5次薄通就可进行混炼。硬丁腈胶门尼粘度为90~120,塑性低,工艺性能差,只有经过充分塑炼才能进行进一步加工。但是,由于丁腈胶韧性大,塑炼生热大、收缩剧烈,塑炼特别困难。欲提高丁腈胶的塑炼效果,应采用低温薄通法,即尽可能降低塑炼温度和强化机械作用力,加入增塑剂虽可提高丁腈胶的塑炼效果。但对混炼胶可塑度的提高不利,因此 ,不宜采用。丁基胶、乙丙胶的化学性质稳定,因此缺乏塑炼效果,前者门尼粘度一般为38~75,可不经塑炼而直接混炼,后者加工所必需的可塑性应在合成过程中获得。
二、 混炼
1、混炼的目的
为了提高橡胶产品使用性能,改进橡胶工艺性能和降低成本,必须在生胶中加入各种配合剂。混炼就是通过机械作用使生胶与各种配合剂均匀混合的过程。
混炼不良,胶料会出现配合剂分散不均,胶料可塑度过低或过高、焦烧、喷霜等到现象,使后续工序难以正常进行,并导致成品性能下降。控制混炼胶质量对保持半成品和成品性能有着重要意义。通常采用检查项目有:1、目测或显微镜观察;2、测定可塑度;3、测定比重;4、测定硬度;5、温室物理机械性能和进行化学分析等。进行这些检验的目的是为了判断胶料中的配合剂分散是否良好,有无漏加和错加,以及操作是否符合工艺要求等。
2、混炼理论
由于生胶粘度很高,为使各种配合剂均匀混入和分散,必须借助炼胶机的强烈机械作用进行混炼。
各种配合剂,由于其表面性质的不同,它们对橡胶的活性也各不一致。按表面特性,配合剂一般可分为二类:一类具有亲水性,如碳酸盐、陶土、氧化锌、锌钡白等;另一类具有疏水性,如各种炭黑等。前者表面特性与生胶不同,因此不易被橡胶润湿;后者表面特性与生胶相近,易被橡胶润湿。为获得良好混炼效果,对亲水性配合剂的表面须加以化学改性,以提高它们与橡胶作用的活性,使用表面活性剂即可起到此种作用。表面活性剂大多为有机化合物,具有不对称的分子结构。其中常含有—OH、—NH2、—COOH、—NO2、—NO或—SH等极性基团,具有未饱和剩余化合价,有亲水性,能产生很强的水合作用;另外,它们分子结构中还有非极性长链或苯环式烃基,具有疏水性。因而当表面活性剂起着配合剂与橡胶之间的媒介作用,提高了配合剂在橡胶中的混炼效果。
表活性剂还起到稳定剂的作用,它们能稳定已分散的配合剂粒子在胶料中的分散状态,不致聚集基结团,从而提高了胶料的稳定性。
判断一种生胶混炼性能的优劣,常以炭黑被混炼到均匀分散所需时间来衡量.
生胶分子量分布的宽窄对混炼性能有着重要的影响。影响炭黑在橡胶中分散的因素除橡胶本身外,还有炭黑粒子的大小,结构和表面活性等有关,因而炭黑粒子愈细,在橡胶中的分散就愈困难,高结构炭黑的空隙大,在混炼钢初期形成的包容胶浓度低而粘度大,在随后的混炼中产生较大的剪应力,因而更易分散。
3、混炼工艺
目前,混炼工艺按其使用的设备,一般可分为以下两种:开放式炼机混炼和密炼机混炼。
1)、开放式炼胶机混炼
在炼胶机上先将橡胶压软,然后按一定顺序加入各种配合剂,经多次反复捣胶压炼,采用小辊距薄通法,使橡胶与配合剂互相混合以得到均匀的混炼胶。
加料顺序对混炼操作和胶料的质量都有很大的影响,不同的胶料,根据所用原材料的特殊性点,采用一定的加料顺序。通常加料顺序为:生胶(或塑炼胶)——小料(促进剂、活性剂、防老剂等)——液体软化剂——补强剂、填充剂——硫黄。
生产中,常把个别配合剂与橡胶混炼以做成母炼胶,如促进剂母炼胶,或把软化剂配成膏状,再用母炼胶按比例配料,然后进行混炼。这样可以提高混炼的均匀性,减少粉剂飞扬,提高生产效率。开放式炼胶机混炼的缺点是粉剂飞扬大、劳动强度大、生产效率低,生产规模也比较小;优点是适合混炼的胶料品种多或制造特殊胶料。
2)、密炼机混炼
密炼机混炼一般要和压片机配合使用,先把生胶配合剂按一定顺序投入密炼机的混炼室内,使之相互混合均匀后,排胶于压片机上压成片,并使胶料温度降低(不高于100℃),然后再加入硫化剂和需低温加入的配合剂,通过捣胶装置或人工捣胶反复压炼,以混炼均匀,经密炼机和压片机一次混炼钢就得到均匀的混炼胶的方法叫做一段混炼法。
有些胶料如氯丁胶料,顺丁胶料经密炼机混炼后,于压片机下片冷却,并停放一定时间,再次回到密炼机上进行混炼,然后再在压片机上加入硫化剂,超促进剂等,并使其均匀分散,得到均匀的混炼胶,这种混炼方法叫做二段混炼。密炼机的加料顺序一般为:生胶——小料(包括促进剂、活性剂、防老剂等)——填料、补强剂——液体增塑剂。
要得到质量好的混炼胶,应根据胶料性质来决定合适的容量,加料顺序以及混炼的时间、温度、上顶栓的压力等工艺条件。
有些胶料采用密炼机混炼,可把塑炼和混炼工艺合并进行。经验证明,天然胶采用密炼机进行一段混炼效果较好。此法简化了生产工序,缩短生产周期,提高效率。但如在配方中使用大量难于在橡胶中均匀分散的配合剂时,则不宜采用此法,仍需用塑炼胶进行混炼,以免发生混炼不均现象。密炼机混炼与开放式炼胶机混炼相比,机械化程度高,劳动强度小,混炼时间短,生产效率高,此外,因混炼室为密闭的,减少了粉剂的飞扬。
除上述两种混炼方法外,目前还有一种新的螺杆混炼机(传递式混炼机)混炼法,其特点是连续混炼,生产效率高。可使混炼与压延、压出联动力,便于实现自动化。
3)、几种橡胶的混炼特性
a、天然胶
天然胶受机械捏炼时,塑性增加很快,发热量比合成胶小,配合剂易于分散。加料顺序对配合剂分散程度的影响不像合成胶那样显著,但混炼时间长,对胶料性能的影响比合成胶大。
采用开放式炼胶机混炼时,辊温一般为50~60℃左右)。用密炼机时多采用一段混炼法。
b、丁苯胶
混炼时生热大,升温快,混炼温度应比天然胶低。丁苯胶对粉剂的湿润能力较差,故粉剂难于分散,所以混炼时间要比天然胶长,采用开放式炼胶机混炼时需加薄通次数。用密炼机混炼,可采用二段混炼法,硫化剂,超促进剂在第二段的压片机中加入,由于丁苯胶在高温下容易结聚,因此密炼机混炼时需注意控制温度一般排胶温度不宜超过130℃。
c、氯丁胶
氯丁胶的物理状态随温度而变化。通用型氯丁胶在常温下至70℃时为弹性态,容易包辊,混炼时配合剂易于分散,温度升高到70~94℃呈粒状,并出现粘辊现象而不能进行塑炼、混炼、压延等工艺;温度继续升高而呈塑性态时,显得非常柔软而没有弹性,配合剂也很难均匀分散。采用开放式炼胶机混炼时,辊温一般在40~50℃范围内,温度高则易粘辊。加料时先加入氧化镁后加入氧化锌,这可避免焦烧。当氯丁胶中掺入10%的天然胶或顺丁胶时,能改善工艺性能。用密炼机混炼时,可采用二段混炼,操作更安全。氧化锌在第二段混炼的压片机上加入。
氯丁胶混炼时,温度高则容易出现粘辊和焦烧的毛病。因此,操作时须严格控制温度和时间。
d、两种或两种以上橡胶并用
若配方中采用两种或两种以上和橡胶,其混炼方法有两种:一种是橡胶各自塑炼,使其可塑性相近,然后相互混均,再加各种配合剂,使之分散均匀。此法简便;另一种方法是各种橡胶分别加入配合剂混炼,然后把各胶料再相互混炼均匀。后者能提高混炼的均匀程度。
三、 硫化
1. 硫化对橡胶性能和影响
1)、定伸强度
通过硫化,橡胶单个分子间产生交联,且随交联密度的增加,产生一定变形(如拉伸至原长度的200%或300%)所需的外力就随之增加,硫化胶也就越硬。
对某一橡胶,当试验温度和试片形状以及伸长一定时,则定伸强度与MC(两个交联键之间橡胶分子的平均分子量)成反比,也就是与交联度成正比。这说明交联度大,即交联键间链段平均分子量越小,定伸强度也就越高。
2)、硬度
与定伸强度一样,随交联度的增加,橡胶的硬度也逐渐增加,测量硬度是在一定形变下进行的,所以有关定促强度的上述情况也基本适用于硬度。
3)、抗张强度
抗张强度与定伸强度和硬度不同,它不随交联键数目的增加而不断地上升,例如使硫磺硫化的橡胶,当交联度达到适当值后,如若继续交联,其抗张强度反会下降。在硫黄用量很高的硬质胶中,抗张强度下降后又复上升,一直达到硬质胶水平时为止。
4)、伸长率和永久变形
橡胶的伸长率随交联度的增加而降低,永久变形也有同样的规律。有硫化返原性的橡胶如天然橡胶和丁基橡胶,在过硫化以后由于交联度不断降低,其伸长率和永久变形又会逐渐增大。
5)、弹性
未硫化胶受到较长时间的外力作用时,主要发生塑性流动,橡胶分子基本上没有回到原来的位置的倾向。橡胶硫化后,交联使分子或链段固定,形变受到网络的约束,外力作用消除后,分子或链段力图回复原来构象和位置,所以硫化后橡胶表现出很大的弹性。交联度的适当增加,这种可逆的弹性回复表现得更为显著。
2. 硫化过程的四个阶段
胶料在硫化时,其性能随硫化时间变化而变化的曲线,称为硫化曲线。从硫化时间影响胶料定伸强度的过程来看,可以将整个硫化时间分为四个阶段:硫化起步阶段、欠硫阶段、正硫阶段和过硫阶段。
1)、硫化起步阶段(又称焦烧期或硫化诱导期)
硫化起步的意思是指硫化时间胶料开始变硬而后不能进行热塑性流动那一点的时间。硫起步阶段即此点以前的硫化时间。在这一阶段内,交联尚未开始,胶料在模型内有良好的流动性。胶料硫化起步的快慢,直接影响胶料的焦烧和操作安全性。这一阶段的长短取决于所用配合剂,特别是促进剂的种类。用有超速促进剂的胶料,其焦烧比较短,此时胶料较易发生焦烧,操作安全性差。在使用迟效性促进剂(如亚磺酰胺)或与少许秋兰姆促进剂并用时,均可取得较长的焦烧期和良好的操作安全性。但是,不同的硫化方法和制品,对焦烧时间的长短亦有不同要求。在硫化模压制品时,总是希望有较长的焦烧期,使胶料有充分时间在模型内进行流动,而不致使制品出现花纹不清晰或缺胶等到缺陷。在非模型硫化中,则应要求硫化起步应尽可能早一些,因为胶料起步快而迅速变硬,有利于防止制品因受热变软而发生变形。不过在大多数情况下仍希望有较长的焦烧时间以保证操作的安全性。
2)、欠硫阶段(又称预硫阶段)
硫化起步与正硫化之间的阶段称为欠硫阶段。在此阶段,由于交联度低,橡胶制品应具备的性能大多还不明显。尤其是此阶段初期,胶料的交联度很低,其性能变化甚微,制品没有实用意义。但是到了此阶段的后期,制品轻微欠硫时,尽管制品的抗张强度、弹性、伸长率等尚未达到预想的水平,但其抗撕裂性耐磨性和抗动态裂口性等则优于正硫化胶料。因此,如果着重要求后几种性能时,制品可以轻微欠硫。
3)、正硫阶段
大多数情况下,制品在硫化时都必须使之达到适当的交联度,达到适当的我联度的阶段叫做正硫化阶段,即正硫阶段。在此阶段,硫化胶的各项物理机械性能并非在同一时都达到最高值,而是分别达到或接近最佳值,其综合性能最好。此阶段所取的温度和时间称为正硫化温度和正硫化时间。
正硫化时间须视制品所要求的性能和制品断面的厚薄而定。例如,着重要求抗撕裂性好的制品,应考虑抗撕强度最高或接近最高值的硫化时间定为正硫化时间;要求耐磨性高的制品,则可考虑磨耗量小的硫化时间定为正硫化时间。对于厚制品,在选择正硫时间时,尚需将“后硫化”考虑进去。所谓“后硫化”,即是当制品硫取出以后,由于橡胶导热性差,传热时间长,制品因散热而降温也就较慢,所以它还可以继续进行硫化,特将它称为“后硫化”。“后硫化”导致的抗张强度和硬度进一步增加,弹性和其它机械性能降低,制品的使用寿命因之受到损害。所以,制品越厚就越应将“后硫化”考虑进去。在一般情况下,可以根据抗张强度最高值略前的时间或以强伸积(抗张强度与伸长率的乘积)最高值的硫化时间定为正硫化时间。
4)、过硫阶段
正硫阶段之后,继续硫化便进入过硫阶段。这一阶段的前期属于硫化平坦期的一部分。在平坦期中,硫化胶的各项物理机械性能基本上保持稳定。当过平坦期之后,天然橡胶和丁基橡胶由于断链多于交联出现硫化返原现象而变软;合成橡胶则因交联继续占优势和环化结构的增多而变硬,且伸长率也随之降低,橡胶性能受到损害。
硫化平坦期的长短,不仅表明胶料热稳定性的高低,而且对硫化工艺的安全操作以及厚制品的硫化质量的好坏均有直接影响。
对于硫黄硫化而言,硫化平坦期的长短,在很大程度上取决于所用促进剂的种类和用量。用有超速促进剂(如TMTD)的胶料,在硫化开始以后,由于它迅速失去活性,交联键的断裂得不到补充,引起硫化平坦期缩短。如果交联键的热稳定性差,则易产生硫化返原现象。当交联键的键能较高时,即使使用超速促进剂也能获得较长的硫化平坦期,使用低硫高促体系,便能达到这一目的。增高硫化温度,裂解比交联的速度增加得更快,硫化返原倾向越强,硫化平坦期也越短。所以采用高温硫化时,必须选取能使硫化平坦期较长的促进剂。使用超速促进剂时,要求硫化温度低,否则硫化平坦期将缩短到甚至不能防护可能发生的过硫。
3. 用硫化仪测定硫化程度
使用硫化仪测定胶料硫化特性方便,而且只需进行一次试验即可得到完整的硫化曲线。由此曲线可以直观地或经简单计算得到全套硫化参数:初始粘度、最低粘度、诱导时间(焦烧时间),硫化速度、正硫化时间和活化能等。由于硫化仪具有这些优点,故其在橡胶工业生产上及硫化动力学,硫化机理等的研究上得到越来越广泛的应用。